Fixed Wireless Access – Path to Economical Rural Broadband

GS Sickand

July 22th 2019

□ FWA Business Overview

CBRS Update

□ Rate and Reach with CBRS

□ CBRS Ecosystem

□ Summary

Why Fixed Wireless Access now?

FWA momentum growing in every G - 5G and LTE-Advanced is no exception

FWA Discussion | Commercial in confidence | 2019-05-30

Wireless Solutions 2021

FWA 5 year CAGR: 37.4 % - Biggest opportunity for BB

Proven Technology – Global/Local

THE VALUE OF WIRELESS NETWORK

Standards based technology with global ecosystem

LTE FWA — Business case Suburban and rural

Budgetary Value*

- Suburban and Rural:
 - \$<250 Cost per Home Passed
 - 600 homes/sq. mile Suburban
 - 10 homes/sq. mile Rural
 - Cash flow positive <3 years

Performance

- **10, 25, 50, and 100** Mbps Service
- Network supports, 2
 Mbps Busy Hour
 Throughput per HHC
 with a 28% YoY growth
- Aligned with Marketing take rates, pricing, and targeted network design metrics

Time to Revenue

 Network Deployment can begin as soon as the 3.5GHz spectrum usage is enabled by FCC's SAS/ESC certification

Fixed LTE in 3.5GHz: A viable solution and a profitable venture

 st Subscriber growth assumed 10% to 33% in 5 years, 3.5 GHz CBRS spectrum; assumes 60 MHz spectrum

Fixed wireless technology Massive MIMO - beamforming

Traditional cell sites project radio waves in a fixed predefined pattern — similar to a flood light

- Massive MIMO cell sites project radio in narrow beams directed to the users – similar to a spot light
- Multiple beams can be created which will dynamically adjust to user locations & usage
- The end result is an increase in signal and a reduction in interference from other users in the sector — improved throughput to each user in the sector

Fixed wireless technology Multi-User MIMO

 Sector capacity in a traditional cell site is shared amongst all of the users of the cell site

- With Multi-User MIMO, sector capacity resources can be re-used across multiple users in the same sector
- The end result is an increase in sector capacity due to the re-use of resources across multiple users – creating virtual sectors within a single sector

FWA Discussion | Commercial in confidence | 2019-05-30

Spectrum Update

Key FWA spectrum

Frequency	Benefits	Challenges	Availability
2.5 GHz	 ~200 MHz of licensed spectrum Best propagation amongst TDD spectrum US ecosystem available today Highest predictability due to licensed spectrum 	 Cost of acquiring spectrum Majority of spectrum in populated areas is owned 	– Now
3.5 GHz CBRS	 150 MHz of spectrum Global LTE ecosystem Good balance between propagation, power and reuse Interference managed via SAS (Spectrum Access System) 		 2H-2019 as defined by CBRS ecosystem certification timelines
5 GHz	- 555 MHz of spectrum	 Propagation challenges - Maximum of 36 dBm EIRP Mostly proprietary solutions Prone to interference due to contention based access method 	– Today
5.9 GHz-6.425 GHz	– 500 MHz of spectrum	 Will likely follow unlicensed framework established for 5 GHz, lobbying FCC to balance licensed and unlicensed 	- Estimated 2022
24 GHz — 39 GHz	- Channels of 100 MHz possible	- Significant challenges - propagation	 Outdoor CPEs with NSA Estimated mid- 2020
57 GHz – 71	– 14 GHz of spectrum	- Significant challenges - propagation	 Partially Today;
	3 5GHz (CBRS) is the most viable FWA option	n considering coverage / capacity	/ tradeoffs

3.5 GHz (CBRS) – innovation band

150mhz of shared spectrum to spur innovation

Spectrum challenges

The value of wireless network

GAA Is a Low risk Option For Deployment Of FWA Application

CBRS Timeline Estimate

CBRS Evolution To NR

Expect CBRS To Support NR (NSA) by end of 2019

CBRS Alliance commenced work on NR standards extensions started 2018.Q4 3GPP working on new band definition **n48** for 5G NR Devices to support CBRS will come later

Provides Future Expansion To Adjacent Bands 3.7 – 4.2 GHz - C Band DL 3.45 – 3.55 GHz (Currently under study by NTIA)

NR - The Future Of The CBRS Band

Rate and Reach with CBRS

Multiple rate services supported on the same cell site

Peak Sector Throughput, Average Sector Throughput and Busy Hour Throughput

- Peak Throughput
 - CPE is in great SINR conditions. The CPE gets all available LTE resources.
- Average Throughput
 - CPEs are distributed throughout the cell under various RF conditions. LTE resources are shared amongst all CPEs
 - Used to dimension the network for capacity planning
- Busy Hour Throughput
 - Average measured Backhaul throughput divided by number of Homes connected. Based on industry trends and wireline industry input, it is currently 2 3 Mbps per Home.

	Peak TDD LTE DL Throughput	Peak TDD LTE DL Throughput 256 QAM	Peak TDD LTE DL Throughput 256 QAM	Average TDD LTE DL Sector Throughput Baseline + Fixed + LTE Evolution Gains	Average TDD LTE DL Sector Throughput Baseline + Fixed + LTE Evolution Gains
Assumptions	4:1 DL:UL Ratio 2x2 MIMO 64 QAM DL	4:1 DL:UL Ratio 2 x 2 MIMO 256 QAM DL	4:1 DL:UL Ratio 64T64R MU-MIMO	4:1 DL:UL Ratio 4T4R	4:1 DL:UL Ratio 64T64R
20 MHz Cell Carrier Capacity	111 Mbps	147 Mbps	720 Mbps	50 Mbps	200 Mbps
3 x 20 MHz Cell Carrier Capacity	333 Mbps	440 Mbps	1440 Mbps	150 Mbps	600 Mbps
Site — 3 sector 3 x 20 MHz Cell Carrier Capacity	999 Mbps	1320 Mbps	4320 Mbps	450 Mbps	1800 Mbps

Max Cell Range Test with 64T64R – 20 MHz

			Γ						
location	Location			Distance	RSRP	SNR	TCP DL	TCP UL	.atency
1	45°57'0.89"N	119°21'6.89"W		16.39 Km	-103	17	87.2 Mbits/sec	8.2 Mbits/sec	67ms
2	45°58'54.15"N	119°21'1.49"W		19.70 Km	-103	17	89.4 Mbits/sec	8.29 Mbits/sec	70 ms
3	46° 1'31.16"N	119°21'37.83"V	1	24.68 Km	-115	12	50.2 Mbits/sec	7.96 Mbits/sec	71 ms
4	46° 3'24.02"N	119°22'16.79"V	1	28.19 Km	-122	8	11.6 Mbits/sec	3.04 Mbits/sec	70 ms

CPEs can connect up to 28 Kms with LoS conditions and get good throughput

FWA Discussion | Commercial in confidence | 2019-05-30

Rural 64T64R FWA Results (SU-MIMO) – One UE at a time – 20 MHz 💈

Rural 64T64R FWA Results (SU-MIMO) – All UEs simultaneously – 20 MHz

	DL	
	Thrpt	
	(Mbps)	UL Thrpt
	with	(Mbps)
UE	SU-	with SU-
Number	MIMO	MIMO
1 (good)	11.1	1.8
2 (good)	11.2	1.8
3 (med)	11.2	1.6
4 (med)	11.3	0.7
5 (med)	11.5	0.74
6 (med)	10.8	2
7 (poor)	9.5	0.178
8 (poor)	5.5	0.325
Average		
Sector	88.2	
Thrput	Mbps	

8 Layer MU-MIMO Test - 64 QAM - MU MIMO

FWA average sector capacity - 64T64R in a 20 MHz channel is 200 Mbps, 8 layer MU-MIMO & 64QAM

10 Layer MU-MIMO Test – 64 QAM - MU MIMO

— Tests done with TCP

FWA average sector capacity - 64T64R in a 20 MHz channel is 300 MBPS, 10 layer MU-MIMO & 64QAM

8 Layer MU-MIMO Test - 256 QAM - MU MIMO

					Recorded	
					Throughput DL	
CRE Test Location	Recorded RSRP	Recorded SINR	Latitudo	Longitudo	1	
CPE Test Location	(dB)	(dBm)	Latitude	Longitude		
9	-108	16	45°47'42.41"N	119°12'18.18"W	38	
15	-107	18	45°50'57.40"N	119°10'0.29"W	28.4	
3	-104	16	45°44'52.24"N	119°15'40.08"W	32.8	
13	-99	19	45°50'18.13"N	119°14'29.01"W	40.9	
4	-105	18	45°49'39.58"N	119°12'17.68"W	51.3	
5	-98	20	45°48'47.44"N	119°12'16.88"W	15.8	
10	-102	19	45°46'39.59"N	119°11'41.73"W	38.4	
12	-106	17	45°50'5.85"N	119°13'33.49"W	28.6	
					274.2	

- Locations are between 6-8 km from Site

Tests done with TCP

FWA average sector capacity - 64T64R in a 20 MHz channel is 250-275 MBPS, 8 layer MU-MIMO & 256 QAM

13 Layer Test – 256 QAM - MU MIMO

		1				1		
Location 14						Recorde	d Throu	ghput
Location 16	CPE Test Location	Recorded RSRP (dB)	Recorded SINR (dBm)	Latitude	Longitude	1	2 2	3
	9	-108	16	45°47'42.41"N	119°12'18.18"W	27.9	27.8	29.6
Location 12	1	-76	24	45°48'21.00"N	119°17'25.00"W	33.9	35.4	35.4
Location 4	15	-107	18	45°50'57.40"N	119°10'0.29"W	29.3	30.3	27.4
	13	-103	14	45°45'45.05"N	119°14'9.16"W	25.7	23.3	23.9
Location 5	19	-104	16	45°44'52.24"N	119°15'40.08"W	19.2	18.7	18.7
Location 2	14	-109	15	45°52'18.57"N	119°11'9.65"W	14.6	14.1	14.4
CTL Site	2	-72	24	45°48'31"N	119°17'41"W	54.8	54.5	54.7
Location 3	3	-77	25	45°48'21.95"N	119°17'32.032"W	42.4	42.5	42.1
	4	-105	18	45°49'39.58"N	119°12'17.68"W	34.9	43.4	43.4
Location 9	5	-98	20	45°48'47.44"N	119°12'16.88"W	34.8	33.1	33.9
	10	-102	19	45°46'39.59"N	119°11'41.73"W	7.44	27.2	11.6
And a	12	-106	17	45°50'5.85"N	119°13'33.49"W	38.4	37.9	36.9
Location 10	16	-96	20	45° 51' 49.69"N	119° 17' 11.69"W	26.3	25.3	25
Location TU						389.64	413.5	397
Location 13 Location 19 © 2018 Google	— 10 — 3 — Te — Ro W	Decation Location ests don esults co hich affe	ons are b ns are be e with T in be imp ected the	between etween 4 CP proved a e througl	6-8 km fro 00-500 m s there we nput.	m Sit re wii	ends	

2

FWA average sector capacity - 64T64R in a 20 MHz channel is 400 MBPS, 10 layer MU-MIMO & 256 QAM, proof point that 400 MBPS is possible

28 GHz and 3.5 GHz

28 GHz DL in combination with mid-band or low band can give better DL coverage

Ecosystem

LTE FWA device evolution

- Global ecosystem forming around 3.5 GHz
- Proprietary devices are expensive and never achieve global scale
- Global scale w/LTE options is keeping price lower
- Typical CPE price levels:
 - \$150-\$200 indoor
 - \$200-\$400 outdoor
 - Technology support:
 - Devices with 4x4MIMO, 3CC, 256 QAM available now!!

CBRS Chipsets and devices

- Chipset capable of Cat 18 DL/Cat 13 UL, but no B48 device available today
- Commercial Devices with Max Th'put dependent on ODM implementation
- ODM driven by market demand and volumes usual min. 10s of thousands qty

BEC CPE Roadmap for CBRS

	6900-R15 Category 6	6900-R18 Category 6	6900-R20 Category 12	6900-R21 Category 12
Chipset	Qualcomm	GCT	Qualcomm	Qualcomm SD
TDD Bands	B41	B42/43/48	B41/42/43/48/46	B41/42/43/48
Antenna	2x2	4x4	4x2	4x4
CA	2xCA	2xCA	3xCA	3xCA
Availability	NOW	Sampling	Aug./2018	Q4/2018

4 | BEC Technologies, Inc. | © 2018

- Customers are demanding more robust broadband services and capabilities
- Fixed wireless has become a solid solution to meet growing bandwidth needs
 - Changes in technology
 - Availability of new spectrum
 - Growth of larger ecosystems
 - Government investment
- FWA has strong business case with more rapid time-to-revenue
 - As broadband provider
 - As MVNO
- Many operators worldwide are finding ways to successfully put in place a FWA solution

Thank You!

For more information:

Visit our website: <u>www.ericsson.com/regional-operators</u>